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Abstract

The increasing popularity of jumbo frames means growing variance in the
size of packets transmitted in modern networks. Consequently, network
monitoring tools must maintain explicit traffic volume statistics rather than
settle for packet counting as before. We present constant time algorithms for
volume estimations in streams and sliding windows, which are faster than
previous work. Our solutions are formally analyzed and are extensively eval-
uated over multiple real-world packet traces as well as synthetic ones. For
streams, we demonstrate a run-time improvement of up to 2.4X compared
to the state of the art. On sliding windows, we exhibit a memory reduction
of over 100X on all traces and an asymptotic runtime improvement to a
constant. Finally, we apply our approach to hierarchical heavy hitters and

achieve an empirical 2.4-7X speedup.

1. Introduction

Traffic measurement is vital for many network algorithms such as rout-
ing, load balancing, quality of service, caching and anomaly/intrusion detec-
tion [37, 47, 10, 29, 23], 25]. Typically, networking devices handle millions
of concurrent flows [50L 48, 26]. Often, monitoring applications track the
most frequently appearing flows, known as heavy hitters, as their impact is

most significant.
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Most works on heavy hitters identification have focused on packet count-
ing [0, 24, 53], [51]. However, in recent years jumbo frames and large TCP
packets are becoming increasingly popular and so the variability in packet
sizes grows. Consequently, plain packet counting may no longer serve as a
good approximation for bandwidth utilization. For example, in data col-
lected by [32] in 2014, less than 1% of the packets account for over 25% of
the total traffic. Here, packet count based heavy hitters algorithms might
fail to identify some heavy hitter flows in terms of bandwidth consumption.

Hence, in this paper we explicitly address monitoring of flow wvolume
rather than plain packet counting. Further, given the rapid line rates and
the high volume of accumulating data, an aging mechanism such as a sliding
window is essential for ensuring data freshness and the volume estimation’s
relevance. The window variant is motivated by load balancing applications.
In these, one wishes to allocate resources to flows in a way that matches the
consumed bandwidth. Volume estimation over sliding windows allows anal-
ysis of the most recent bandwidth consumption, which is a good indicator
of the future. Hence, we study both streams and sliding windows.

Finally, per flow measurements are not enough for certain functionalities
like anomaly detection and Distributed Denial of Service (DDoS) attack
detection [55, 49]. In such attacks, each attacking device only generates a
small portion of the traffic and is not a heavy hitter. Yet, their combined
traffic volume is overwhelming. Hierarchical heavy hitters (HHH) aggregates
traffic from IP addresses that share some common prefix [§]. In a DDoS,
when attacking devices share common IP prefixes, HHH can discover the
attack. To that end, we consider volume based HHH detection as well.

Before explaining our contribution, let us first motivate why packet

counting solutions are not easily adaptable to volume estimation. Counter



algorithms typically maintain a fixed set of counters [5] 6], 22] 44 [45, [38]
that is considerably smaller than the number of flows. Ideally, counters are
allocated to the heavy hitters. When a packet from an unmonitored flow
arrives, the corresponding flow is allocated the minimal counter [45] or a
counter whose value has dropped below a dynamic threshold [44].

We refer to a stream in which each packet is associated with a weight as
a weighted stream. Similarly, we refer to streams without weights, or when
all packets receive the same weight, as unweighted. For unweighted streams,
ordered data structures allow constant time updates and queries [45] [5], since
when a counter is incremented, its relative order among all counters changes
by at most one. Unfortunately, maintaining the counters sorted after a
counter increment in a weighted stream either requires to search for its new
location, which incurs a logarithmic cost, or resorting to logarithmic time
data structures like heaps. The reason is that if the counter is incremented
by some value w, its relative position might change by up to w positions.

This difficulty motivates our work]l|

1.1. Contributions

We contribute to the following network traffic measurement problems:
(i) stream heavy hitters, (ii) sliding window heavy hitters, (iii) stream hier-
archical heavy hitters. Specifically, our first contribution is Frequent items
Algorithm with a Semi-structured Table (FAST), a novel algorithm for mon-
itoring flow volumes and finding heavy hitters. FAST processes elements
in worst case O(1) time using asymptotically optimal space. A major part

of our contribution lies in the detailed formal analysis we perform, which

1 The most naive approach treats a packet of size w as w consecutive arrivals of the
same packet in the unweighted case, resulting in linear update times, which is even worse.



proves the above properties, as well as in the accompanying performance
study. We evaluate FAST on five real Internet packet traces from a data
center and backbone networks. We demonstrate a speedup of up to a factor
of 2.4X compared to previous works.

Our second contribution is Windowed Frequent items Algorithm with
a Semi-structured Table (WFAST), a novel algorithm for monitoring flow
volumes and finding heavy hitters in sliding windows. We evaluate WFAST
on five Internet traces and show that its runtime is reasonably fast, and that
it requires as little as 1% of the memory of previous work [36]. We analyze
WPFAST and show that it operates in constant time and is space optimal,
which asymptotically improves both the runtime and the space consumption
of previous work. We believe that such a dramatic improvement makes
volume estimation over a sliding window practical!

Our third contribution is Hierarchical Frequent items Algorithm with
a Semi-structured Table (HFAST), which finds hierarchical heavy hitters.
HFAST is created by replacing the underlying HH algorithm in [46] (Space
Saving) with FAST. We evaluate HFAST and show an asymptotic update

time improvement as well as a 2.4-7X speedup on real Internet traces.

2. Related Work

Our work addresses three related problems, which we survey below.

2.1. Streams

Probabilistic short counters, or estimators, represent large numbers using
small counters by degrading precision [53| 24, [54]. By shrinking counters’
size, more flows can be monitored in SRAM. But these methods still require

maintaining a flow-to-counter mapping that often requires more space than



the counters themselves. Sampling is also an attractive approach when space
is scarce [15] 2, 28] despite the resulting sampling error.

Sketches such as Count Sketch (CS) [11] and Count Min Sketch (CMS) [21]
are attractive as they enable counter sharing and need not maintain a flow to
counter mapping for all flows. Sketches typically only provide a probabilistic
estimation, and often do not store flow identifiers. Thus, they cannot find the
heavy hitters, but only focus on the volume estimation problem. Advanced
sketches, such as Counter Braids [42], Randomized Counter Sharing [40] and
Counter Tree [12], improve accuracy but their queries require complicated
decoding procedures that can only be done off-line.

In counter based algorithms, a flow table is maintained, but only a small
number of flows are monitored. These algorithms differ from each other in
the size and maintenance policy of the flow table, e.g., Lossy Counting [44]
and its extensions [22], Frequent [38] and Space Saving [45]. Given ideal
conditions, counter algorithms are considered superior to sketch based tech-
niques. Particularly, Space Saving was empirically shown to be the most
accurate [16} [17,143]. Many counter based algorithms were developed by the
databases community and are mostly suitable for software implementation.
The work of [5] suggests a compact static memory implementation of Space
Saving that may be more accessible for hardware design. Yet, software im-
plementations are becoming increasingly relevant in networking as emerging
technologies such as NF'Vs become popular.

Alas, most previous works rely on sorted data structures such as Stream
Summary [45] or SAIL [5] that only operate in constant time for unweighted
updates. As mentioned, existing sorted data structures cannot be main-
tained in constant time in the weighted updates case. Thus, a logarithmic

time heap based implementation of Space Saving was suggested [17] for the



more general volume counting problem. IM-SUM, DIM-SUM [7] and BUS-
SS [27] are very recent algorithms developed for the volume heavy-hitters
problem (only for streams, with no sliding windows support). BUS-SS offers
a randomized algorithm that operates in constant time. IM-SUM operates
in amortized O(1) time and DIM-SUM in worst case constant time. Em-
pirically, DIM-SUM is slower than FAST. Additionally, DIM-SUM requires
@ counters, for some ¢ > 0, to guarantee IV - M - € error and operates in
O(¢~!) time. FAST only needs half as many counters for the same time

and error guarantees. The very recent work of [I], introduces a mergeable

algorithm that operates in amortized constant time.

2.2. Sliding Windows

Heavy hitters on sliding windows were first studied by [3]. Given an
accuracy parameter (¢), a window size (W) and a maximal increment size
(M), such algorithms estimate flows’ volume on the sliding window with an
additive error that is at most W - M - ¢.

Their algorithm requires O (% log? %) counters and performs queries and
updates in O (% log %) time. The work of [39] reduces the space requirements
and update time to O (%) An improved algorithm with a constant update
time is given in [35]. Further, [5] provided an algorithm that requires O (1)
for queries and supports constant time updates and item frequency queries.

The weighted variant of the problem was only studied by [36], whose
algorithm operates in O (é) time and requires O (é) space fora W - M - ¢
approximation; here, A € [1, M] is the average packet size in the window.
In this work, we suggest an algorithm for the weighted problem that (i) uses
optimal O (%) space, (ii) performs heavy hitters queries in optimal O (%)

time, and (iii) performs volume queries and updates in constant time.



2.8. Hierarchical Heavy Hitters

Hierarchical Heavy Hitters (HHH) were first defined by [18], and then
extended to multiple dimensions in [19, 20, B0, 55, 46]. HHH algorithms
monitor aggregates of flows that share a common prefix. To do so, HHH
algorithms treat flows identifiers as a hierarchical domain. We denote by H
the size of this domain.

A single dimension algorithm requiring O (%) space was introduced

n [41]. Later, [52] showed a two dimensions algorithm requiring O (H i/Q)
space and update time. The full and partial ancestry algorithms [20] are trie
based algorithms that require O (% logeN ) space and operate at O (H logeN)
time. The state of the art [46] algorithm requires O (%) space and its update
time for weighted inputs is O (H log(2)).

The algorithm of [46] solves the approximate HHH problem by dividing
it into multiple simpler heavy hitters problems. In our work, we replace
the underlying heavy hitters algorithm of [46] with FAST, which yields a
space complexity of O (%) and an update complexity of O(H). That is, we
improve the update complexity from O (H log (%)) to O (H). Alternatively,
the recent work of [I4] suggests a novel HHH algorithm that takes linear

space but optimizes the update time.

3. Preliminaries

Given a set U and a positive integer M € N1, we say that S is a (U, M )-
weighted stream if it contains a sequence of (id, weight) pairs. Specifically:
S ={(p1,...pN), where Vi € 1,...,N : p; e U x {1,... M}. Given a packet
pi = (d;i,w;), we say that d; is p;’s id while w; is its weight; packets that
share the same id are part of a flow, and we are interested in estimating
the volume of flows. N is the stream length, and M is the maximal packet
size. Notice that the same packet id may possibly appear multiple times in
the stream, and each such occurrence may potentially be associated with
a different weight. Given a (U, M)-weighted stream S, we denote v,, the



Symbol | Meaning

stream

number of elements in the stream
maximal value of an element in the stream

window size

the universe of elements

the set {0,1,...,r — 1}

FAST performance parameter.

the volume of an element x in S

Vg an estimation of v,

the volume of element x in the last W elements of S

QI=E|IZ(»

=

)& e

an estimation of vV
estimation accuracy parameter
heavy hitters threshold parameter

<
%mHgHg

Table 1: List of Symbols
volume of flow x, as the total weight of all packets with id . That is: v, £

> ie{l,...N}: wi- For a window size W € NT, we denote the window volume

of id d& ;s its total weight of packets with id = within the last W packets,
that is: v}/ 2 Eie{N—W—i—l,...,N}:di:x w;. We seek algorithms that support
the operations:
ADD(< x,w >): append a packet with identifier x and weight w to S.
QUERY(x): return an estimate v, of vg.

WINQUERY(z): return an estimate v}V of v}V.
We now formally define the main problems in this work:

(e, M)-Volume Estimation: QUERY(z) returns an estimation (0,,) that
satisfies vy, < Uy <wy + N - M - €.

A(W, ¢,M)-Volume Estimation: WINQUERY(z) returns an estimation

(v} that satisfies v}V <ol <oV + W . M -«

(0, e, M)-Approximate Weighted Heavy Hitters: returns a set H C
U such that:
VeeUU: (v >N-M-0 — x€H) Nvuz<N-M-(0—¢) = x¢ H).

(W, 0, e, M)-Approximate Weighted Heavy Hitters: returns a set
H C U such that:
VeeUd: (VW >W-M-0 = zc H) AN/ <W-M-(0—¢) = z ¢ H).

Our heavy hitter definitions are asymmetric. That is, they require that
flows whose frequency is above the threshold of N - M -0 (or W - M - 0) are
included in the list, but flows whose volume is slightly less than the threshold
can be either included or excluded from the list. This relaxation is necessary
as it enables reducing the required amount of space to sub linear. Let us
emphasize that the identities of the heavy hitter flows are not known in
advance. Hence, it is impossible to a-priori allocate counters only to these
flows. The basic notations used in this work are listed in Table [IL



Figure 1: An example of how FAST utilizes the SOS structure. Here, flows are partially
ordered according to the third digit (100’s), and each flow maintains its own remainder;
e.g., the estimated volume of D is vp = 583.

4. Frequent items Algorithm with a Semi-structured Table (FAST)

In this section, we present Frequent items Algorithm with a Semi-structured
Table (FAST), a novel algorithm that achieves constant time weighted up-
dates. FAST uses a data structure called Semi Ordered Summary (SOS),
which maintains flow entries in a semi ordered manner. That is, similarly to
previous works, SOS groups flows according to their volume, each of which is
called a volume group. The volume groups are maintained in an ordered list.
Each volume group is associated with a value C' that determines the volume
of its nodes. Unlike existing data structures, counters within each volume
group are kept unordered. Unlike previous works, the grouping is done at
coarse granularity. Each node (inside a group) includes a variable called
Remainder (denoted R). The volume estimate of a flow is C'+ R where R
is the remainder of its volume node and C' is the value of its volume group.

Since the maximal increment, M, is known then a single packet may
advance a counter at most M groups. However, as we keep the volume
groups at coarse granularity SOS can be configured so that a single packet
may advance a flow only O(1) volume groups. For example, in Figure |1} we
maintain volume groups at a granularity of 100 and therefore the number
of volume groups that a single packet can effect is at most rj‘./fo. The update
complexity of SOS is proportional to how many volume groups a flow entry
needs to traverse to maintain the semi ordered state and therefore we can
configure SOS so that the update time is at most O(1). Volume queries are
satisfied in O(1) time using a separate aggregate hash table which maps each
flow identifier to its SOS node. FAST then uses SOS to find a near-minimum
flow when needed.

Figure [1] provides an intuitive example for the case M = 1,000. Here,



Algorithm 1 FAST (M, e, ¢)

Initialization: C+0DVr:cy + 0,15 < 0,5 + L— + lJ L€ [1+¢-‘ .

: function ApD(Item x, Weight w)
if e C or |C|< € then

Co < Co + {MJ

s

re < (rz +w) mod s
C + CU{z}
else
Let m € argming ¢ (cy) > arbitrary minimal item

—1
C:L'<_Cm+|_%+w

re < (s —1+w) mod s
10: C+ C\{m}U{z}

11: function QUERY(x)

12: if € C or |C|<Cthen

13: return r; + s - cs
14: else
15: return s — 1+ s - mingec ¢y

the volume of an item is calculated by both its group counter (C') and the
item’s remainder (R), e.g., the volume of A is 400 + 32 = 432. Flows are
partially ordered according to their third digit, i.e., in multiples of 100, or
M/10. Within a specific group, however, items are unordered, e.g., A, B
and J are unordered but all appear before items with volume of at least
500. As the number of lists to skip prior to an addition is O(1), the update
complexity is also O(1). Specifically, we need to traverse at most 10 linked
lists when updating an item.

Intuitively, flows are only ordered according to volume groups and if
we make sure that the maximal weight can only advance a flow a constant
number of flow groups then SOS operates in constant time. Alas, keeping the
flows only partially ordered increases the error. We compensate for such an
increase by requiring a larger number of SOS entries compared to previously
suggested fully ordered structures. The main challenge in realizing this idea
is to analyze the accuracy impact and provide strong estimation guarantees.

4.1. FAST - Accurate Description

FAST employs [1%—‘ counters, for some non-negative constant ¢ > 0. ¢

determines how ordered SOS is: for ¢ = 0, we get full order, while for ¢ > 0,
it is only ordered up to M -¢/2 (all flows that fall into the same volume group
are unordered, and each group holds a range of M -¢/2 values). The runtime
is, however, O(1/¢) and is therefore constant for any fixed ¢. We note that
an (2 (%) counters lower bound is known [45]. Thus, FAST is asymptotically
optimal for constant ¢. FAST’s pseudo code appears in Algorithm

10



4.2. FAST Analysis

We start by a simple useful observation
Observation 1. Let a,b € N:a=b-|%| + (¢ mod b).

For the analysis, we use the following notations: for every item z € U and
stream length ¢, we denote by ¢;(x) the value of QUERY(x) after seeing t
elements. We slightly abuse the notation and refer to ¢ also as the time at
which the t*® element arrived, where time here is discrete. We denote by
C the set of elements with an allocated counter at time ¢, by r,; the value
of r; and by ¢, the value of ¢;. Also, we denote the volume at time ¢ as

A
Uzt = Zie{l,...,t}: Wy
d

i—X
We now show that FAST has a one-sided error.

Lemma 2. For any t € N, after seeing any (U, M)-weighted stream S of
length t, for any x € U : vy < Uy.

Proof. We prove v, < g(z) by induction over t.
Basis: ¢t = 0. Here, we have v, = 0 = ¢(x).
Hypothesis: vy ;1 < ¢—1(x).
Step: (x4, w;) arrives at time ¢t. By case analysis:

Consider the case where the queried item x is not the arriving one (i.e.,
x # w¢). In this case, we have v, = vy4—1. If x € Ci—1 but was evicted
(Line then ¢, € argmin, ¢, ,(cy¢—1). This means that:

G—1(x) =rpi—1+s- argming ¢, | (cyt—1)

<s—1+s-argmingc,(cyt) = a(z),

where the last equation follows from the query for 2 ¢ C; (Line . Next, if
z € Cy_1 and z € (y, its estimated volume is determined by Line [13| and we
get qe() = q—1(z) > vg—1 = vy If & ¢ Ci—1 then = ¢ Cy, so the values
of ¢t(x), g—1(x) are determined by line Since the value of minyecc ¢, can
only increase over time, we have ¢ (x) > ¢:—1(x) > vy and the claim holds.

On the other hand, assume that we are queried about the last item, i.e.,
x = x¢. In this case, we get vy = vg4—1 + wy. We consider the following
cases: First, if z € Cy_1, then ¢(x) = ¢;—1(x) +w;. Using the hypothesis, we
conclude that vy = vz -1 +w < @—1(x) +wy = ¢¢(x) as required. Next, if
|Ci—1] < €, we also have ¢(x) = ¢—1(x) + w; and the above analysis holds.
Finally, if z ¢ C;_; and |Cy_1| = €, then

_ =s5-—1 . i 1. 1
gi—1(x) =s + s yéncltrilcy’t 1 (1)

11



On the other hand, when z arrives, the condition of Line [2| was not satisfied,
and thus

@(x) =rei+s-cep=(s—1+w) mods

+s - (minyECt—l Cy,t—1 + LH#J)

(Observation [I)) =S -Miyecc,_; Cy,t—1 +s—14w
@ =q-1(z)+w
induction > Ve,t—1 +w = Vg - ]
hypothesis

We continue by showing that FAST is accurate if there are only a few
distinct items.

Lemma 3. If the stream contains at most {@1 distinct elements then

FAST provides an exact estimation of an items volume upon query.

Proof. Since |C] < €, we get that the conditions in Line [2| and Line
are always satisfied. Before the queried element x first appeared, we have
ry = ¢ = 0 and thus QUERY(z)= 0. Once x appears once, it gets a counter
and upon every arrival with value w, the estimation for x exactly increases
by w, since x never gets evicted (which can only happen in Line . O

We now analyze the sum of counters in C.

Lemma 4. For any t € N, after seeing any (U, M )-weighted stream S of
length t, FAST satisfies: Y cc, QUERY(z) <t-M - (1+ ¢/2).

Proof. We prove the claim by induction on the stream length t.

Basis: ¢t = 0. In this case, all counters have value of 0 and thus

Yeec, @(@) =0=1- (M- (1+¢/2)).

Hypothesis: ) o  q-1(7) <(t—1)- M- (1+¢/2).

Step: (xy,w;) arrives at time t. We consider the following cases:

1. z € Cyq or |Ciq] < {#-‘ In this case, the condition in Line

is satisfied and thus c;; = cz—1 + Lw (Line i and ry; =

(re4—1 +w) mod s (Line ). By Observation [I] we get

() = (vgline) Tt + 5 Cat

Trt—1+ W
=cCpt—1+ {xtiJ + (rgt—1 +w) mod s

=w+ Cot—1 + Tgt—1 = qt_l(l‘) + w. (2)

12



Since the value of a query for every y € C; \ {z} remains unchanged,

we get that
Z t(y) = a(z) + Z qe—1(
yeCy yeCi_1
y#z

by @) =w+q—1(z) + > a-1(y)
yeCy_1
y#x

=w+ Y @1y

y€Ci_1
(ﬁndutc}tliop) Sw+(@t-1)- (M- (1+¢/2)
ypothesis
SM+(t—1)- (M- (1+¢/2))
(6>0) St (M- (14 ¢/2)).
2.z ¢ Ci—q and |Cy—4| = {ﬂ-| In this case, the condition of Line
is false and therefore c;; = cpi—1 + LS 1+“’J Line and ry;
(s—1+w) mod s (Line[9). From Observation I 1| we get that

Qt(x) :(byﬁne) Tt + s Cat

=w+cpi-1+s—1

=qi—1(m) — Tm,t—1 1 V\?J +w
< q-1(m) + V\?J +w. (3)

As before, the value of a query for every y € Cy \ {x} is unchanged,
and since Cy—1 \ Cy = {m},

dooay)  =a@) —a-1(m) + Tyec,, ¢-1(y)

y€C
by @) {T(Z)J tw+3ec, , w-1(y)
(i) = |8 v 0o 00 Qe
<M+ M+ -1)- (M- (14 /)
(¢20) <t (M-(1+¢/2)). O

Next, we show a bound on FAST’s estimation error.

Lemma 5. For any t € N, after seeing any (U, M)-weighted stream S of
length t, for any x €U : Uy < vz +t-M - .

13



Proof. First, consider the case where the stream contains at most #
distinct elements. By Lemma [3| v; < v, and the claim holds. Otherwise,

we have seen more than [#—‘ distinct elements, and specifically

t>F+ﬂ. (4)

€
From Lemma [4] it follows that

, tM-(14+¢/2) _t-M-c-(1+¢/2)
Je, Query(w) < 2] = 1+¢ '

(5)

Notice that Vo € C, the value of QUERY(x) is determined in Line that
is, q(z) = ry¢ + 5 - ¢zt Next, observe that an item’s remainder value is
bounded by s — 1 (Line [4 and Line [9)). Thus,

Ve,y € Cp:qu(z) > s+ q(y) = cop > cyy- (6)

By choosing y € argmingec, ¢:(y), we get that if vy; > ¢:(y) + s, then
q(x) > q(y) + s and thus cgp > ¢y . Next, we show that if vy, > ¢ - M - €,
then ¢, > minycc, ¢, and thus 2 will never be the “victim” in Line [7}

1+¢/2 t
. T +M¢/2.7

1+¢
B = W)+ Moj2 = @ > aly) + Mo/2.

q(z) > v >t-M-e=t-M-e

€
€

Next, since ¢q;(z) and ¢/(y) are integers, it follows that q¢.(z) > q¢(y) +

{@ + 1J = ¢(y) + s. Finally, we apply @ to conclude that once x arrives

with a cumulative volume of ¢ - M - ¢, it will never be evicted (Line and
from that moment on its volume will be measured exactly. O

Next, we prove a bound on the run time of FAST.
Lemma 6. let ¢ > 0, FAST adds in O (%) time.

Proof. As mentioned before, FAST utilizes the SOS data structure that
answers queries in O(1). Updates are a bit more complex as we need to
handle weights and thus may be required to move the flow more than once,
upon a counter increase. Whenever we wish to increase the value of a counter
(Line 3| and Line , we need to remove the item from its current group and
place it in a group that has the increased c¢ value. This means that for
increasing a counter by n € N, we have to traverse at most n groups until

14



The stream is divided into W-sized frames Each frame is partitioned into k blocks

1 2 _*
k=l

]
I |
1
\

Y
Each block is The current W-sized window
of size W/k

Figure 2: The stream is divided into intervals of size W called frames and each frame
is partitioned into k equal-sized blocks. The window of interest is also of size W, and
overlaps with at most 2 frames and k + 1 blocks.

we find the correct location. Since the remainder value is at most s — 1

(Line 4] and Line E[), we get that at any time point, a counter is increased by

no more than LH#J (Line [3| and Line . Finally, since s = L# + lJ,
| 222 41] —14w

we get that the counter increase is bounded by {LM%AJ <1+ <
2 2

1+§:0(%). O

Next, we combine Lemma [2] Lemma [5] and Lemma [6] to conclude the
correctness of the FAST algorithm.

Theorem 7. For any fized ¢ > 0, when allocated with ¢ £ {#W counters,

FAST performs updates and queries in constant time, and solves the (e, M)-
VOLUME ESTIMATION problem.

Finally, FAST also solves the heavy hitters problem:

Theorem 8. For any fized ¢ > 0, when allocated with ¢ = [Hd’ counters,

€
by returning {z € U | v, > N-M -0}, FAST solves the (0, e, M )-WEIGHTED
HeAvy HITTERS problem.

5. Windowed FAST (WFAST)

We now present Windowed Frequent items Algorithm with a Semi-structured
Table (WFAST), an efficient algorithm for the (W, e, M )-VOLUME ESTIMA-
TION and (W, 6, e, M)-WEIGHTED HEAVY HITTERS problems.

We partition the stream into consecutive sequences of size W called
frames. Each frame is further divided into k £ {%] blocks, each of size %,
which we assume is an integer for simplicity. Figure 2]illustrates the setting.

WFAST uses a FAST instance y to estimate the volume of each flow
within the current frame. Once a frame ends (the stream length is divisible

15



Symbol | Meaning

k A constant k £ [4/¢]
y A FAST instance using k(1 + ¢) counters.
b A queue of k + 1 queues.

An efficient implementation appears in [5].
The histogram of b, implemented using a hash table.
The offset within the current frame.

SHEw]

Table 2: Variables used by the WFAST algorithm.

by W), we “flush” the instance, i.e., reset all counters and remainders to 0.
Yet, we do not “forget” all information in a flush, as high volume flows are
stored in a dedicated data structure. Specifically, we say that an element

x overflowed at time t if [A;{jvt/kJ > [JI\J/J[CVtV_/lkJ Intuitively, this means that
the rounding of the estimation to the measurement threshold at time ¢ was
changed. We use a queue of queues structure b to keep track of which
elements have overflowed in each block. That is, each node of the main queue
represents a block and contains a queue of all elements that overflowed in
its block. Particularly, the secondary queues maintain the ids of overflowing
elements. Once a block ends, we remove the oldest block’s node (queue) from
the main queue, and initialize a new queue for the starting block. Finally,
we answer queries about the window volume of an item x by multiplying its
overflows count by MW/k, adding the residual count from y (i.e., the part
that is not recorded in b), plus 2M W/k to ensure an overestimation.

For O(1) time queries, we also maintain a hash table B that tracks the
overflow count for each item. That is, for each element x, B[x] contains the
number of times z is recorded in b. Since multiple items may overflow in
the same block, we cannot update B once a block ends in constant time.
We address this issue by deamortizing B’s update, and on each arrival we
remove a single item from the queue of the oldest block (if such exists). The
pseudo code of WFAST appears in Algorithm [2] and a list containing its
variables description appears in Table 2l An efficient implementation of the
queue of queues b is described in [5].

5.1. WFAST Analysis

We start by introducing several notations to be used in this section. We
mark the queried element by z, the current time by W + o, and assume that
item W is the first element of the current frame. For convenience, denote

vg(t1,te) = > ic{tr,... ta}: Wi, 1-€., the volume of z between t; and t5. The
;=

goal is then to appzroximate the window volume of x, which is defined as

vy Zv(o+ 1L, W +0) =v(o+1,W — 1) +v(W,W + o), (7)
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Algorithm 2 WFAST (W, M, ¢)

Initialization: y «+ FAST(M,1/k,®),0 < 0, B <+ Empty hash table,
b < Queue of k + 1 empty queues.

1: function ADD(Item z, Weight w)

2: 0 o0+1 mod W

3: if 0 =0 then > new frame starts
4: y.FLUSH()

5: if o mod % =0 then > new block
6: b.POP()

T b.APPEND(new empty queue)

8: if b.tail is not empty then > remove oldest item
9: oldID <« b.tail.poP()

10: BloldID] + BloldID] — 1

11: if BloldID] = 0 then

12: B.REMOVE(oldI D)

13: prevOver flowCount < \‘N#WJ

14: y.ADD(z, w) > add item
15: if %WJ > prevOver flowCount then > overflow
16: b.head.PusH(z)

17: if B.CONTAINS(x) then

18: Blz] + Blz] +1

19: else
20: Blz] + 1 > adding z to B

21: function WINQUERY (Item x)
22: if B.CONTAINS(z) then

23: return MW/k - (Blz] + 2) + (y.QUERY(z) mod MW/k)
24: else > x has no overflows
25: return 2M W /k+y.QUERY (x)

i.e., the sum of weights in the timestamps within (o+1,0+2,..., W +0) in
which z arrived. We denote the value returned from y.QUERY(z) after the
t’th item was added by ;. Similarly, u; represents whether x arrived at time
t (x = x¢) and overflowed, i.e., the condition of Line (15 was satisfied. We
assume that if = is not allocated a FAST counter at time ¢, then B[z] = 0,
which allows us to consider Line for queries. For simplicity, we mark
Blz] =0 for z ¢ B.

We proceed with a useful lemma that bounds WFAST’s error on arrivals
happening before the flush (Line .

Lemma 9. Let ti,to € {o+1,...+ W — 1} be two timestamps within the

previous frame, then L%J < Z?:tl ur < [%(tiﬁ/;i)—‘ :

Proof. Since y, initialized with € = %, is flushed every W elements (Line ,
any element z that satisfies y.QUERY(z) > MW/k is guaranteed not to lose

its counter (see Lemma [5s proof for a similar analysis). This means that
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once an item overflows, it never loses its counter. Further, being an over-
estimator, an element with a volume of MW/k (or more) is guaranteed to
have a counter since the minimal counter cannot exceed MW /k. Thus, if
vg(t1,t2) < MW/k then the claim holds, since after overflowing for the first
time, an item has to arrive with a weight of MW/k to overflow again. On
the other hand, if v, (¢1,t2) > MW/k then x may overflow for the first time
before its volume reached MW/k, but from that point on only arrivals of =
increase the counter and can cause an overflow. O

We continue with proving the algorithm’s correctness.
Theorem 10. Algorithm@ solves (W, e, M)-VOLUME ESTIMATION.

Proof. We prove the theorem in two steps. We first analyze the volume
of x within the previous frame, and then consider the current one. We
continue by bounding the error introduced by the deamortization and factor
FAST being an approximation algorithm in the first place. Finally, we
add up the different error types and show that WFAST provides a decent
approximation.

We start with the number of times x has overflowed before the flush. By
applying Lemma [9] we get that

We continue with analyzing the current frame, which started after y was
last flushed (Line . As discussed above, an element whose volume is larger
than MW /k overflows and will not lose its counter in the flush, thus:

W+o
Ywro = MW/k - thw ut + (ywto mod MW/k). (9)

Notice that if  does not have a counter, it did not overflow and the equation
still holds.

Next, we consider the number of overflows recorded in B[z] and the
number of actual overflows. We have deamortized (Line E[) the process of
updating the overflow count (in B). This means that B[z] is not guaranteed

to have the exact count of the number of times x overflowed within the blocks
overlapping with the current window. Luckily, since x cannot overflow twice

in the same block, and specifically in the oldest block (b.tail), we get that
we underestimate the number of overflows by at most one, and specifically:

S 1< BRI <30 . (10)

(%
t=o+1 t=o+1

Since y is a FAST instance with parameters (M ,%,(b), it solves the
(e, M)-VOLUME ESTIMATION problem, thus

(W, W +0) < ywo < 0(W, W + 0) + MW/ (11)
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When queried for x, the algorithm returns
oW = MW/k- (Ble] +2) + (ywro mod MW/k)
=@ MW/k- (B[m] +2- ZZ:‘; Ut) + YW +o-

We combine the above inequalities to bound the overestimation:

— W+o
vW = MW/k - (B[x} +2— Zt:w ut) +YW+o

W+o
S MW/k - (B[CE] +3 - Zt:W ut> +o(W,W + o)

W+o

W+o
<@ MW/k- (Zt=0+l up + 3 — thw ut) + (W, W +0)

W—-1
= MW/k- (thoﬂ ug + 3) +o(W,W + o)

vz(o+1,W —1)
< MW /k -
>(Lemma ED /k ([ MW/k

<@ v(o+ 1, W +0) +4MW/k < v + WMe.

]+3>+U(W,W+o)

Similarly, we bound the query value from below:

W = MW/k - (B[a:} +2— Zt:Wo ut> + Yw+o

Wt
> MW/k- (B[r] +2- Zt:WO m) +u(W, W + o)

W+o W+o
> () MW/k- (thoﬂ up+1-— thw ut) + (W, W + o)

Ww—-1
= MW/k- (ZFDH g + 1) +o(W, W + o)

vz(o+1,W —1)

+ tommay MW (| LI

>@ v(o+1,W +0) =0},

J+1>+U(W,W+o)

Showing both bounds, we established that WFAST solves the (W, e, M)-
FREQUENCY ESTIMATION problem. O

As a corollary, Algorithm |2 can find heavy hitters.

Theorem 11. By returning all items x € U for which vV > MW, Algo-
rithm@ solves (W, 0, e, M)-WEIGHTED HEAVY HITTERS.

WFAST runtime analysis:

As listed in the pseudo code of WFAST (see Algorithm [2)) and the de-
scription above, processing new elements requires adding them to the FAST
instance y, which takes O( %) time, and another O(1) operations. The query
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processing includes O(1) operations and hash tables accesses. If one is inter-
ested in finding the heavy hitters efficiently in addition to per-flow volume
queries, we slightly modify the algorithm. Instead of keeping one instance
of y, we keep two such that we always have the FAST instance of the last
two frames. We note that this at most doubles the space and does not affect
the runtime, as only a single instance is updated per packet.

Given a query, we then need to go only over the O(%) counters stored
in both instances to find the heavy hitters. This is because every flow that
has weight at least MWe/4 times during a frame is guaranteed to have a
counter from that point and until the end of the frame, and every flow with
weight MW6 > MWe > 2(MWe/4) is guaranteed to have a weight of at
least MWe/4 in at least one of the frames that overlaps with the window.
In summary, we get the following theorem:

Theorem 12. For any fired ¢ > 0, WFAST processes new elements and
answers window-volume queries in constant time, while finding the window’s
weighted heavy hitters in O(2) time.

6. Hierarchical Heavy Hitters

Hierarchical heavy hitters (HHH) algorithms treat IP addresses as a
hierarchical domain. At the bottom are fully specified 1P addresses such
as pp = 101.102.103.104. Higher layers include shorter and shorter pre-
fixes of the fully specified addresses. For example, p; = 101.102.103.% and
po = 101.102.% are level 1 and level 2 prefixes of pg, respectively. Such pre-
fixes generalize an IP address. In this example, pg < p1 < po, indicating
that pg satisfies the pattern of p;, and any IP address that satisfies p; also
satisfies po. The above example refers to a single dimension (e.g., the source
IP), and can be generalized to multiple dimensions (e.g., pairs of source IP
and destination IP). HHH algorithms need to find the heavy hitter prefixes
at each level of the induced hierarchy. For example, this enables identifying
heavy hitters subnets, which may be suspected of generating a DDoS attack.
The problem is formally defined in [46 20].

Hierarchical Fast (HFAST)

Hierarchical FAST (HFAST) is derived from the algorithm of [46]. Specif-
ically, the work of [46] suggests Hierarchical Space Saving with a Heap(HSSH).
In their work, the HHH prefixes are distilled from multiple solutions of plain
heavy hitter problems. That is, each prefix pattern has its own separate
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Figure 3: The effect of parameter ¢ on operation speed for different error guarantees (e).
¢ influences the space requirement as the algorithm is allocated with (%ﬂ counters.

heavy hitters algorithm that is updated on each packet arrival. For exam-
ple, consider a packet whose source IP address is 101.102.103.104 where the
(one dimensional) HHH measurements are carried according to source ad-
dresses. In this case, the packet arrival is translated into the following five
heavy hitters update operations: 101.102.103.104, 101.102.103.%, 101.102.x,
101.x, and *. Finally, HHHs are identified by calculating the heavy hitters
with each separate heavy hitters algorithm.

HFAST is derived by replacing the underlying heavy hitters algorithm
in [46] from Space Saving with heap [45] to FAST. This asymptotically
improves the update complexity from O (Hlog (1)) to O (H), where H is
the size of the hierarchy. Since the analysis of [46] is indifferent to the
internal implementation of the heavy hitters algorithm, no further analysis
is required for HFAST.

Finally, we note that a hierarchical heavy hitters algorithm on sliding
windows can be constructed using the work of [46] by replacing each space
saving instance with our WFAST. The complexity of the proposed algorithm
is O (%) space and O (H) update time. To our knowledge, there is no prior
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Figure 4: Runtime comparison for a error guarantee od € = 27%. All algorithms provide
the same guarantee, FAST uses different ¢ values.

work for this problem.

7. Evaluation

Our evaluation is performed on an Intel i7-5500U CPU with a clock speed
of 2.4GHz, 16 GB RAM and a Windows 8.1 operating system. We imple-
mented FAST in C++ and released our library as an open source project [4].
Our code is based on the open source library of Cormode, and Hadjielefthe-
riou [I7] which implemented the linked-lists version of the Space Saving in
C. We generalized the implementation to our SOS data structure by imple-
menting volume groups and remainders (see Section 4). The code was also
converted to C++, which allowed us to further optimize its throughput due
to more efficient compilation. We compared to the following algorithms:
Count Min Sketch (CMS) [21] — a sketch based solution that can only solve
the volume estimation problem.

Space Saving Heap (SSH) — a heap based implementation [17] of Space Sav-
ing [45] that has a logarithmic runtime complexity.
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Figure 5: Runtime as a function of accuracy guarantee (€¢) provided by the algorithms.

Hierarchical Space Saving Heap (HSSH) — an HHH algorithm [46] that uses
SSH as a building block and operates in O(H log(1)) complexity.
Full Ancestry — a trie based HHH algorithm suggested by [20], which oper-
ates in O (H log eN) complexity.
Partial Ancestry — a trie based HHH algorithm suggested by [20], which
operates in O (H logeN) complexity and is faster than Full Ancestry.
Related work implementations were taken from open source libraries re-
leased by [16] for streams and by [46] for hierarchical heavy hitters. As we
have no access to a concrete implementation of a competing sliding win-
dow protocol, we compare WFAST to Hung and Ting’s algorithm [36] by
conservatively estimating the space needed by their approach.
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7.1. Datasets

Our evaluation includes the following publicly available datasets:

1. The CAIDA backbone Internet traces that monitor links in Chicago [33],
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Trace Chicagol6 Chicagolb SanJosel4 SanJosel3 DC1
Date(Y/M/D) 2016/02/18 | 2015/12/17 | 2014/06/19 | 2013/12/19 | 2010
#Packets 97TM 85M 112M 97TM 7.3M
Total Volume 94GB 80GB 149GB 110GB 6.1GB
Mean Size 1046B 1013B 1424B 1255B 894B
Max Size 49458B 641348 655358 655288 1476B

Large Packets 0.34% 0.22% 0.78% 0.49% 0%

Large Pkt Traffic 0.5% 0.34% 25.02% 18.81% 0%

Table 3: A summary of key characteristics of the real Internet traces used in this work.

34] and San Jose [31], [32].

2. A datacenter trace from a large university [9].

3. A trace of 436K YouTube video accesses [I3]. The weight of a video
is its length in seconds.

4. Self generated synthetic traces following a Zipfian distribution with
varying skews. A trace of skew X is denoted ZipfX. Each trace is
unweighed (each element has weight 1) and contains 10M elements.

A summary of key characteristics for CAIDA traces is given in Table
As can be seen, the impact of jumbo frames varies between backbone links.
Yet, the weight of large packets increases over time in both. In the San Jose
link, the number and volume of large packets have increased by 50% within
a period of 6 months. For Chicago, large packets are still insignificant, but
their number and volume have increased by 50% in two months.

7.2. Ezxperiment Setup

Our experiments are done in the following manner: First the dataset
is loaded to the main memory, doing so minimizes the influence of loading
the dataset on the throughput evaluation of the algorithms. Then, the

25



tested algorithm is initialized and is sequentially updated for each packet
in the trace. We estimate the achieved throughput using the time it takes
the algorithm to consume the entire trace. Finally, we minimize noises by
averaging each data point with 10 runs.

7.83. Effect of ¢ on Runtime

We begin the evaluation by exploring our trade-off parameter ¢. Recall
that smaller ¢ yields space efficiency while the runtime is proportional to
%, i.e, smaller ¢ is expected to result is higher processing time per packet
and a slower algorithm. Figure [3] shows runtime performance of FAST as
a function of ¢ for three different ¢ values (278,219 2712). As can be
observed, in practice, we indeed get speedup with larger ¢ values. But, we
reach a saturation point and increasing ¢ beyond a certain threshold has
little impact on performance. It is encouraging that even with small values
of ¢ such as 277, FAST is still reasonably fast. For the rest of our evaluation,
we focus on ¢ = 0.25 that offers attractive space/time trade off, as well as
on ¢ = 4 that yields higher performance at the expense of more space.

7.4. Speed vs. Space Tradeoff

To explain the tradeoff proposed by FAST, we measured the runtime
of the various algorithms for a fixed error guarantee. Here, SSH and CMS
are fully determined by the error guarantees (set to e = 27%) represented
by a single measurement point. CMS requires more counters as it uses 10
rows of [e/e] counters each, while SSH only requires 1/e. FAST can provide
the same error guarantee for different ¢ values, which affects both runtime
and the number of counters. Hence, FAST is represented by a curve. As
Figure |4 shows, in all traces, allocating a few additional counters to the 1/¢
required by SSH allows FAST to achieve higher throughput. Further, on all
traces, FAST provides faster throughput than CMS with far fewer counters.
While FAST has larger per counter overheads than CMS, its ID to counter
mapping allows it to also solve the WEIGHTED HEAVY HITTERS problem.

7.5. Operation Speed Comparison

Figure |5| presents a comparative analysis of the operation speed of pre-
vious approaches. Recall that CMS is a probabilistic scheme; we configured
it with a failure probability of 0.1%. For FAST, we used two configurations:
¢ =4 (4FAST) and ¢ = 0.25 (0.25FAST).

As can be observed, 4FAST and 0.25FAST are considerably faster than
the alternatives in Chicagol6 and YouTube. In SanJosel4 and SanJosel3,
SSH is as fast as 4FAST for a large e (small number of counters). Yet, as
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€ decreases and the number of counters increases, SSH becomes slower due
to its logarithmic complexity. In contrast, CMS is almost workload inde-
pendent. When considering only previous work, in some workloads CMS
is faster than SSH, mainly because SSH’s performance is workload depen-
dent. The bottom 3 figures (g,h,i) show results for synthetic unweighted
Zipf traces with skew parameters of 0.7, 1, 1.3, respectively. As can be ob-
served, for mildly skewed distributions, CMS is faster than SSH, while for
skewed distributions such as when the skew is 1.3, SSH is faster. In all these
measurements, 4FAST is faster than the alternatives.

7.6. Sliding Window

We evaluate WFAST compared to Hung and Ting’s algorithm [36], which
is the only one that supports weighted updates on sliding windows. Figure|[]
shows the memory consumption of WFAST with parameters ¢ = 4 and ¢ =
0.25 (A4WFAST, 0.25FAST) compared to Hung and Ting’s algorithm. All
algorithms are configured to provide the same worst case error guarantee.
As shown, WFAST is up to 100 times more space efficient than Hung and
Ting’s algorithm. Sadly, we could not obtain an implementation of Hung
and Ting’s algorithm and thus do not compare its runtime to WFAST.
However, WFAST improves their update complexity from O(%), where A is
the average packet size, to O(1).

Figure [7] shows the operation speed of WFAST for different window sizes
and different € values. As seen, WFAST achieves over 15 million updates per
second using a single thread. It is about half as fast as FAST for streams and
still within the range of acceptable parameters. There is little dependence
in window size and € with the exception of the DC1 dataset. In this dataset,
since the average and maximal packet sizes are similar, the inner working of
WFAST causes overflows to be more frequent when ¢ is close to the window
size. Thus, to achieve similar performance as the other traces one needs a
sufficiently large window sized.

7.7. Hierarchical Heavy Hitters

In Figure [§] we evaluate the speed of our HFAST compared to the al-
gorithm of [46], which is denoted by HSSH, as well as the Partial Ancestry
and Full Ancestry algorithms by [20]. We used the library of [46] for their
own HSSH implementation as well as for the Partial Ancestry and Full An-
cestry implementations. Since the library was released for Linux, we used
a different machine for our HFAST evaluation. Specifically, we used a Dell
730 server running Ubuntu 16.04.01 release. The server has 128GB of RAM
and an Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz processor.
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We used two dimensional source/destination hierarchies in byte granu-
larity, where networks IDs are assumed to be 8, 16 or 24 bits long. The
weight of each packet is its byte volume, including both the payload size
and the header size. As depicted, HFAST is up to 7 times faster than the
best alternative and at least 2.4 times faster in every data point.

8. Discussion

In this paper, we presented algorithms for estimating per flow traffic
volume in streams, sliding windows and hierarchical domains. We achieved
asymptotic and empirical improvements.For streams, FAST processes pack-
ets in constant time while being asymptotically space optimal. This is en-
abled by our novel approach of maintaining only a partial order between
counters. An evaluation over real-world traffic traces as well as synthetic
ones has yielded a speedup of up to 2.4X compared to previous work.

In the sliding window case, we showed that WFAST works reasonably
fast and offers 100x reduction in required space, bringing sliding windows
to the realm of possibility. For a given error of W - M - e, WFAST requires
O (%) counters while previous work uses O (£), where A is the average packet
size. Moreover, its update complexity is a constant compared to O (£ )in [36].

For hierarchical domains, we presented HFAST that requires O(£) space
and has O(H) update complexity. This asymptotically improves previous
works. Additionally, we demonstrated a speedup of 2.4X-7X on real Internet
traces. To our knowledge, there is no prior work on that problem and we plan
to examine its possible applications in the future. FAST can be implemented
as is in virtual switches such as Open vSwitch and VPP, in these settings
the offered speedup directly reduces the measurement overheads. The code
of FAST is available as open source [4].
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